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ABSTRACT
Several studies have shown the utility of neural network models
in learning course similarities and providing insightful course rec-
ommendations from enrollment data. In this study, we explore if
additional signals can be found in the morphological structure of
course names. We train skip-gram, FastText, and other combination
models on these course sequence data from the past nine years
and compare results with state-of-the-art models. We find a 97.95%
improvement in model performance (as measured by recall @ 10 in
similarity-based course recommendations) from skip-gram to Fast-
Text, and 80.75% improvement from the current best combination
model to the previous state-of-the-art model, indicating that the
naming convention of courses (e.g., PHYS_H101) carries valuable
signals. We define attributes with which to categorize course pairs
from our validation set and present an analysis of which models
are strongest and weakest at predicting the similarity of which cat-
egories of course pairs. Additionally, we also explore course-taking
culture, analyzing if courses with the same demographic features
are learned to be more similar. Our approach could help students
find alternatives to full courses, improve existing course recommen-
dation systems and course articulations between institutions, and
assist institutions in course policy-making.

CCS CONCEPTS
• Applied computing → Education; • Computing methodolo-
gies →Machine learning.
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1 INTRODUCTION
Course selection is a complex and important decision-making pro-
cess involving multiple factors, and has long-term implications for
students’ academic success and career trajectories. Multiple factors
come into play, including student characteristics (motivations and
abilities), course and instructor features, information availability,
and situational considerations [2]. Early course choices, especially
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for first-year students in fields like engineering, humanities, natu-
ral sciences, or social sciences, often predict their eventual majors,
influencing career trajectories [1, 4, 19]. Unfortunately, students
often lack comprehensive knowledge about available courses, their
similarities, and the consequences of their choices [10]. Even with
online catalogs, students may struggle to understand courses and
their counterparts across different disciplines. Institutions often pro-
vide inadequate guidance [21], and students may face enrollment
barriers like overcrowded classes. Thus, offering students guidance
on course selection, including similar alternatives, is crucial for
expanding options and empowering decision-making for academic
success. Among various course recommendation approaches, a
similarity-based method is essential when students seek alterna-
tives for credit requirements or wish to explore additional courses
related to familiar topics. This approach not only aids in creating a
diverse curriculum but also serves as a foundation for serendipitous
recommendations [16]. Our focus lies in multifaceted notions of
similarity, considering factors such as course content, division, or
semesters offered.

We aim to address the research gap related to the under-utilization
of morphological structures in course names for recommendation
tasks. Neural network models, particularly skip grams, have demon-
strated suitability for inferring course similarities and predictions
(Course2Vec), akin to how skip-gram models (Word2Vec) learn
word representations through sentences [15]. Previous work has
highlighted the effectiveness of normalized concatenation of the
Course2Vec model and course catalog description-based models
in ground truth tests of course similarity [16]. In this context, a
multi-factor variant of Course2Vec, which learns both course and
feature representations (e.g., instructor names and course depart-
ments), significantly outperformed Course2Vec. Notably, course
catalog descriptions and historical enrollment data prove useful in
predicting course time load and difficulty [5]. While similar embed-
ding techniques have been applied in machine translation to assess
course similarity across institutions [14], none of these studies have
tapped into the morphological meaning of course names in course
representations.

We also address the issue of fairness with our model analysis.
Fairness in education technology is an emerging concern, as his-
torical bias in existing data could lead to students of marginalized
communities being disadvantaged by machine learning algorithms.
When predicting the achievement of college students, many grade
prediction methods do not accurately predict underachieving stu-
dents [17], and may underestimate underrepresented demographic
groups [24]. The first step to mitigate such bias is to see if it exists
in the data. In our study, we investigate if course selections differ by
demographic features and if the demographic makeup of courses
biases course equivalency tasks.

https://doi.org/10.1145/3636555.3636903
https://doi.org/10.1145/3636555.3636903


LAK ’24, March 18–22, 2024, Kyoto, Japan Yinuo Xu and Zachary A. Pardos

We assess a novel application of FastText to the Course2Vec task,
where it learns embeddings of both full tokens and substrings in a
sequence. This approach aims to capture greater course similarity
signals by considering substrings of course IDs as they commonly
appear in transcripts (e.g., "PHYS_H101"), a feature not included
in skipgrams. The resulting sequence-based embeddings are then
concatenated with course catalog description embeddings obtained
from a pre-trained Sentence-BERT language model and a Bag of
Words tf-idf model. Subsequently, we perform a novel attribute
analysis for course similarity prediction. This involves defining
attributes for ground truth course similarity pairs in our validation
set (e.g., similar semester types, both lower division, same course
affixes, etc.) and analyzing the performance of skip-gram versus
FastText Course2Vec models for these attributes. Our research ques-
tions are:

• RQ1: Does FastText pick up more course similarity signal
than skip-gram from course enrollment data?

• RQ2: For what types of similar course pairs do these various
models perform best and worst?

• RQ3: Do course demographics affect course equivalency
performance?

FastText outperforms skip-gram as the Course2Vec model, cap-
italizing on the morphological meaning of course names for en-
hanced similarity signals. In our attribute analysis across 23 cate-
gories, FastText consistently improves performance, particularly for
courses offered in non-summer semesters, and pairs with one STEM
and one non-STEM course. Classes with the same demographic fea-
tures exhibit slightly better performance than those with different
features for FastText.

Our work aims to improve course representations for better al-
ternative course recommendations. These recommendations can
help reduce student stress related to impacted courses and inform
decisions in higher education institutions. Traditionally, faculty
have the laborious task of finding suitable alternative courses, often
overlooking options in other departments and missing updates. Ad-
ditionally, for courses in smaller departments with low enrollments,
our FastText approach outperforms skip-gram, offering valuable
course recommendations. Our methods expand the sets of equiva-
lency pairs, making them more comprehensive. This benefits stu-
dents by helping them discover alternatives to fully enrolled courses.
It also strengthens existing course recommendation systems, em-
powering advisors to provide personalized recommendations. Fur-
thermore, it supports institutions in formulating effective course
policies. Lastly, it enhances cross-institutional tasks like articulation
and the identification of similar courses that fulfill requirements.1.

2 RELATEDWORK
Multiple higher education institutions have adopted technologies
to support student course selection. One such example is the Open
University in Australia, an online educational group that utilizes
Personalised Adaptive Study Success (PASS) to personalize students’
curriculum planning. To generate curriculum recommendations
and feedback, PASS analyzes the student profile, the learning profile,
and the curriculum profile[6]. In addition to student-oriented course
recommendations, some universities also adopted advisor-oriented
1code is available at https://github.com/CAHLR/representation_presenter

recommendations. In collaboration with its counseling staff, the
New York Institute of Technology developed its own predictive
model to identify at-risk students in need of assistance and assist
counselors in their work [12]. Course recommendation approaches
like ours could be integrated into higher education institutions to
aid both student course selection and advisor advising.

In the realm of course recommendations, various datasets and
models have been employed, spanning historical transcript data,
student demographics, course information, and enrollment records.
Models for grade-aware recommendations include linear singular
value decomposition and skip-gram-like log-linear models [11].
Neural networks have emerged for long-term course planning [13]
and next-semester recommendations [16]. PLAN-BERT, inspired by
masked training and self-attention, supports long-term course plans
with consecutive basket recommendations [20]. Previous work has
shown that course similarity vectors generated by Course2Vec
from enrollment data encode course topics, mathematical rigor, and
common student majors [16]. The state-of-the-art (SOTA) course
equivalency model that uses enrollment data and catalog data is
a combination of multi-factor Course2Vec skip-gram trained on
enrollment and BoW tf-idf on catalog [16]. The SOTA course equiv-
alency model uses data from student enrollment, syllabus, and
catalog [8]. While integrating diverse data sources has enhanced
course recommendations [7, 22], obtaining course syllabus data,
used in the SOTA equivalency model, remains challenging due to
intellectual property concerns. Given the absence of institutionally
sanctioned centralized repositories for course syllabi, we investigate
whether our approach can achieve comparable performance using
only catalog and enrollment data. FastText has been previously
used for Named Entity Recognition in course recommendations to
extract skills within a hybrid model [23]. However, none of the prior
studies have explored the morphological structure of course names
for recommendations. Our study introduces a novel application of
the FastText model for equivalency-based course recommendations.

3 DATA
The two datasets used for training models are the enrollment data
and course catalog data, both of which are from Fall 2012 to Spring
2021. They are provided by official channels at a large public uni-
versity in the US. The enrollment data has 6,449,725 rows of records
in total in this time frame, with 10,762 unique courses. The course
catalog data has 9,116 rows, with 9,116 unique courses.

The data we use to evaluate predicted equivalency is the equiva-
lency validation data maintained by the Office of Registrar, where
a course is paired with another one if the student can only get
credit for taking one of the courses. The validation test data is also
pruned to only include courses in the vocabulary set of enrollment
Course2Vec models. Lastly, the validation test data is pruned again
to only include pairs that could be predicted by all models, resulting
in 732 pairs. Among the validation pairs, 51.09% of the pairs are
both STEM courses, 46.72% are both non-STEM courses and only
2.186% of the pairs have one STEM and one non-STEM course.

We define and analyze 23 validation pairs to assess model per-
formance. These pairs are manually engineered based on 5 course
categories (student diversity, semester type, division, course af-
fixes, STEM designation), which we consider fundamental units
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distinguishing various courses. By encompassing both student de-
mographics and intrinsic course properties, these categories ensure
that models learn beyond surface-level naming conventions, cap-
turing student course-taking behaviors. The broad categories are
further divided into smaller course-level sub-categories, resulting
in 23 pair-level categories. For instance, the division type category
is subdivided into lower division, upper division, and graduate di-
vision, generating pair-level categories like "both lower div," "both
upper div," "both grad div," and "different divisions."We exclude 4 cat-
egories (different STEM/non-STEM, both cross-listed, different divi-
sions, and both grad divisions) as they constitute less than 5% of the
validation test set, rendering their performance non-generalizable.
The analyzed attribute categories and their definitions are:

• Diversity and distribution: A course has major diversity if the
students enrolled represent more than 27 (median) different
majors. A pair of courses have similar distribution if they
have at least 3 (median) majors in common among each
course’s top 10 majors.

• Semester types: Overlapping semesters occur when two
courses are both offered in regular semesters (Spring, Fall
semesters) or both in Summer semesters.

• Divisions: Courses share the same division if both are lower
division (course number below 100), upper division (course
number between 100 and 199), or graduate division (course
number at least 200).

• Cross-listing and affixes: A course has an affix if it includes
the prefix “C” (indicating cross-listing), suffix “AC” (repre-
senting the “American Culture” breadth requirement), or
other suffixes (e.g., “A”, “B”, “C” denoting an ordered se-
quence of courses). Cross-listed courses are those offered
jointly by two or more departments, identified by the prefix
token “C” (e.g., “Data Science C100” cross-listed with “Com-
puter Science C100”). In our categorization, "cross-listed"
means either pair contains the token "C," signifying a course
that was not cross-listed before but becomes cross-listed
with another department later.

• STEM: Courses are categorized as STEM or non-STEM based
on The U.S. Department of Homeland Security (DHS) STEM
Designated Degree Program 2.

Preprocessing of enrollment data before model training involve
grouping by students and then sorting each student’s sequence by
semester.Within the semester, the order of courses is randomly shuf-
fled. Next, the Course2Vec model is trained on these class sequences.
The course catalog description data used to train the Sentence-BERT
model is not pre-processed, while it is for the Bag of Words model
by removing stop words, punctuation, and generic sentences across
descriptions, word lemmatization and stemming, and tokenizing
the bag-of-words in each course description.

We apply three embedding models to course enrollment se-
quences. Skip-gram and FastText were originally conceived to be
applied to natural language, while Multi-factor Course2Vec [16]
is a variant on the skip-gram but was first applied to course se-
quences. Among these three models, FastText had not yet been
applied to learn course embeddings from enrollment sequences. We
also apply two models to course catalog descriptions. A pre-trained
2https://www.ice.gov/sites/default/files/documents/stem-list.pdf

Sentence-BERT model and a Bag of Words (tf-idf) model are used to
embed course catalog descriptions. Lastly, different combinations of
course sequence embeddings and catalog description embeddings
are concatenated.

4 MODELS
4.1 Embedding Models: Skip-gram, Multi-factor,

and FastText Course2Vec
Similar to Word2Vec, the skip-gram Course2Vec model represents
courses by treating an enrollment sequence as a sentence, consid-
ering each class in the sequence as a word [16]. For instance, an
enrollment sequence like [Molecular & Cell Biology 160, English
100, Statistics 134] is analogous to a sentence. The Multi-factor
Course2Vec enhances Course2Vec by incorporating user-defined
features such as instructors and academic departments. In the pre-
vious study, the multi-factor model outperformed Course2Vec in
recall@10 within the equivalency set. We apply a Multi-C2V model
with the same factors to our enrollment data. Course names are
morphologically rich, encompassing the department name, course
affixes, and course number. Affixes include prefixes like "C" in "Sta-
tistics C140" denoting a course offered jointly and suffixes like "A"
or "B" indicating courses taken in sequence. In our dataset’s insti-
tution, course numbers below 100 denote lower-division courses,
100 to 199 signify upper-division, and above 200 indicate graduate-
level courses. Skip-gram, however, doesn’t capture these naming
conventions, assigning a distinct vector to each course. FastText,
representing words as character n-grams and accommodating out-
of-vocabulary words, may enhance skip-gram’s course representa-
tions by considering both semantic and morphological meanings
[3].

4.2 Course Catalog Models: Sentence-BERT and
Bag of Words

Sentence-BERT is a state-of-the-art BERT model that derives se-
mantically meaningful sentence embeddings that can be compared
using cosine-similarity [18], reducing the time to find the most
similar pair. Here we use Sentence-BERT to obtain the embedding
representations learned from course catalogs. Bag of Words repre-
sents a piece of text into a vector of real numbers. Tf-idf weighting
gives a larger value for words that are rare in the whole document
but frequent in a document. We choose to use the tf-idf weighting
as it produced the best-performing course catalog embedding in a
previous study [16].

4.3 Combination Models
To enhance Course2Vec representation, we concatenate the Sentence-
BERT representation of the corresponding course catalog to the
Course2Vec embedding, normalizing the embeddings before con-
catenation. Similarly, we concatenate the normalized course em-
bedding from the FastText model with the catalog embedding from
Sentence-BERT. A modification of the multi-factor Course2Vec
model, Multi-C2V FastText, is created by vector summing the fea-
ture and FastText course embeddings. Lastly, Multi-C2V FastText +
Sentence-BERT is a model generated by vector summing the fea-
ture embeddings and FastText course embeddings, concatenated
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with the Sentence-BERT embedding of the catalog descriptions.
Multi-C2V skip-gram + BoW tf-idf is the previous state-of-the-art
course equivalency model, included as a baseline for comparison.

4.4 Model Training and Evaluation
We employ a validation set consisting of 732 course credit equiva-
lency pairs, defined by faculty. To expand the set’s size, we evaluate
pairs bidirectionally (A predicting B and vice versa), resulting in
1,464 pairs. Following established metrics from a previous study,
we calculate recall@10 for equivalency validation pairs. For each
pair, we rank other courses based on the cosine similarity of their
vector representations and calculate recall@10 based on the rank
of the second course. Ten-fold cross-validation is then utilized to
optimize model hyperparameters. The 1,464 pairs are split into 10
folds. Then, within each phase of the cross-validation, 80% of the
pairs are used to find the best training hyper-parameters, which
are then used to create a model to evaluate on rest of the 20%. The
ranks from each fold are aggregated to calculate overall recall@10.
Grid search is conducted on hyperparameters for both skip-gram
and FastText, including min count: [10, 20, 30, 40, 50, 60, 70, 80, 90],
window: [2, 3, 4, 5, 6, 7, 8, 9], vector size: [200, 210, 220, 230, 240, 250,
260, 270, 280, 290, 300, 310], sample: [1.e-05, 2.e-05, 2.e-06], alpha:
[0.01, 0.02, 0.03, 0.04], min alpha: [0.0001, 0.0003, 0.0005, 0.0007],
and negative: [10, 15, 20, 25].

5 RESULTS
5.1 RQ 1: Does FastText pick up more course

similarity signal than skip-gram from
course enrollment data?

Table 1 shows the recall@10 for the models trained on the enroll-
ment data. Among course embedding models, FastText performs
significantly better than skip-gram. For the enrollment models,
there is a 97.95% increase from skip-gram to FastText. The best
model (FastText + SBERT) improves on the SBERT model by 10.81%,
and the state-of-the-art model (Multi-c2v skip-gram + BoW tf-idf)
by 80.75% . Thus FastText does pick up more course similarity
signals than skip-gram for the enrollment data.

5.2 RQ 2: For what types of similar course pairs
do the course2vec models perform best and
worst?

We investigate if there were categorical areas in which FastText was
making improvements in recall. We conduct an attribute analysis,
where we calculated the recall of skip-gram model vs. FastText
model for 23 attributes as described in Section 3. The results com-
paring recall of FastText model vs. skip-gram as the Course2Vec
sequence embeddingmodel for course pairs with different attributes
are summarized in Fig. 1. FastText outperforms skip-gram in all
categories. The top 3 categories that FastText has the greatest ad-
vantage in are “neither offered in summer", "neither diverse, similar
distributions", and "same course affixes". Additionally, 8 out of 23
categories have low frequency of occurrence in the enrollment
data (highlighted yellow in Fig. 1). FastText has an advantage over
skip-gram in all categories that have a low frequency of occurrence.
We also apply the same analysis for FastText which is trained on

enrollment data vs. SBERT which is trained on catalog data in Fig.
2. FastText performs better than SBERT in 6/23 categories, the top
categories for FastText being "different departments", "different
divisions", and "different course numbers". The top categories for
SBERT are "same course number", "different course affixes", and
"neither diverse, different distributions".

5.3 RQ 3: Do course demographics affect course
equivalency performance?

There has been evidence of algorithmic bias concerning race in
grade prediction models trained on historical enrollment [9], mean-
ing that there are different patterns of course selection by race. To
rectify racial biases in models, we should first identify where they
exist. Based on the assumption that students of the same culture
(here we use race, gender, and parent income class as proxies) may
share goals and choose courses more similarly than those of differ-
ent cultures, we hypothesize that the course selection behaviors
of students of the majority demographic affect the embedding rep-
resentations of courses. Assuming there exist different cultures of
course-taking that manifest in course embeddings, then course pairs
with the same majority demographics should be more accurately
predicted than those with different majority demographics. Courses
can have multiple majority races and genders, meaning that there
is an equal number of students in these categories (typically ex-
ist for courses with a small number of students). We divide the
continuous variable parent income into 2 categories: below overall
median income, and above or equal to median income. Courses
with the same demographic features have slightly better perfor-
mance. The differences between recall@10 of courses that have the
same demographics and different demographics (for gender, race,
and income) are shown in table 2. We see that course pairs with
the same demographic features perform slightly better than those
with different features for FastText. Skipgram and SBERT are less
sensitive to demographic features.

6 DISCUSSION
FastText provides an 80.75% improvement over the previous SOTA
combination model utilizing enrollment and catalog data [16]. Fur-
thermore, compared to a previous SOTA model using multiple data
sources (student enrollment, course syllabus, and catalog data) [8],
FastText achieves a similar boost in performance using only enroll-
ment and catalog data. While the previous study showed a 49.5%
increase from multi-C2V to the best combination model (multi-C2V
on enrollment + BoW on syllabus and catalog), the percent improve-
ment from FastText to the best combination model (FastText on
enrollment + SBERT on catalog) is 47.6%. Given the challenge of
obtaining syllabus data, our approach offers an effective alternative.
The strength of our subword approach is particular to how course
IDs are structured in our dataset, but it can be extended to different
institutions. Most higher education institutions use similar course
token conventions, even if expressed differently, to distinguish var-
ious course categories. For example, distinguishing between upper
and lower-division courses often relies on course numbers. It’s this
regularity in course tokens that likely makes FastText effective.
Given a small set of preexisting course articulation pairs between
two institutions [14], FastText could be used to map courses across
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Table 1: Equivalency validation results

Model skip-gram FastText BoW tf-idf SBERT FastText +
SBERT

Multi-c2v
skip-gram

Multi-c2v
skip-gram +
BoW tf-idf

Multi-c2v
FastText

Multi-c2v
FastText +
SBERT

Recall@10 0.2008 0.3975 0.5092 0.5295 0.5867 0.2891 0.3246 0.3876 0.5673

Figure 1: Difference in Recall@10 between skip-gram and FastText, ordered by the descending FastText advantage. The yellow
bars indicate categories that have below median frequency of occurrence in the enrollment data. The plot on the right shows
the proportion of validation pairs for each category.

Table 2: Recall@10 of course pairs with the same demo-
graphic (gender, race, income) features minus recall@10 of
pairs with different features.

gender race income
diff in skip-gram recall 0.0159 -0.0309 0.00489
diff in FastText recall 0.0451 0.0381 0.0329
diff in SBERT recall 0.0159 -0.0309 0.00490

institutions. Machine translation or other techniques could then be
used to align the spaces, which could identify which conventions
represent the same categories (e.g., upper/lower div).

FastText’s versatility in capturing similarity signals from diverse
sub-words within course names, including token-level details like
department and course number, makes it outperform skip-gram
across all categories, even in instances with low occurrence frequen-
cies. This is important for articulating courses with low enrollments,
broadening transferable course lists, and expanding pathways. In
the top 10 categories (Fig. 1), 7/10 show above-median proportions
for pairs with the same department and course numbers, with 7/10
featuring below-median occurrence frequencies. Course affixes
minimally impact recall (median proportion with the same affix
is 9.150%), except when all pairs share identical affixes. Analyzing

the bottom 10 categories, 7/10 have proportions below the median
for pairs with the same department, and 8/10 have proportions
below the median for pairs with the same course numbers. FastText
prioritizes course numbers and departments over affixes, likely in-
fluenced by its character n-grams’ default length (3-6). While length
3 captures most course numbers and length 6 captures most de-
partment names, course affixes often merge with other sub-words,
making them insufficient for differentiation between courses. Dis-
parities in the top and bottom categories of SBERT’s advantage
over FastText may be attributed to the semantics of course descrip-
tions and the morphology of course names: courses with "different
departments", "different divisions", and "different course numbers"
are more morphologically similar than semantically.

FastText performs better in predicting course pairs that share
the same majority demographic attributes (race, gender, and parent
income), showing an average difference of 9.34%. STEM courses
also exhibit a 19.25% improvement in FastText predictions when
compared to non-STEM courses. Among pairs that are both STEM,
43.58% have a majority of Asian students, 31.28% have a major-
ity of male students, and 31.55% have a majority of students with
parent income at or above the median. This suggests that course
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Figure 2: Difference in Recall@10 between SBERT (based on catalog data) and FastText (based on enrollment data), ordered by
the descending FastText advantage.

embeddings could be influenced by the bias of the majority demo-
graphic, resulting in enhanced recommendations for the majority
demographic — a consideration for future fairness work.

This work has several implications for student success and cre-
ating personalized learning experiences. By providing more accu-
rate alternative recommendations, institutions could help alleviate
student stress about getting into impacted courses. Additionally,
course alternative recommendations could also provide students
with other possible classes to take if they wish to explore a field fur-
ther. Moreover, this information can be integrated into institutional
policy-making, influencing decisions related to curriculum devel-
opment, resource allocation, and course articulation between aca-
demic departments. Rather than relying solely on faculty members
to manually identify equivalent or alternative courses, institutions
can leverage model-generated insights to streamline this process.
This not only enhances the efficiency of administrative tasks but
also ensures that a more diverse set of alternatives, including those
from different departments and low enrollments, is considered in
the decision-making process. Additionally, institutions can leverage
the expanded list of similar courses to inform curriculum design
and guide the development of more engaging course sequences for
students.

7 FUTUREWORK AND LIMITATIONS
Several future improvements could be pursued in the modeling
techniques. Ensemble and fusion methods could be used to take
advantage of the strength of each model, minimize the bias in
models, and achieve better performance. To further explore more

accurate representations of sub-words, which capture course equiv-
alencies significantly better than skip-gram course embeddings,
self-attention models could be brought to bear. Furthermore, since
our task utilizes data spanning 9 years, there could be multiple ver-
sions of the same course, and the subject matter of a course could
drift over time. Future work could focus on incorporating temporal
information by concatenating course tokens with the academic
year, learning the contextual embeddings for various versions of a
course, and performing word sense disambiguation. Extending our
demographic analysis to include age and first-gen status could give
additional insights biases in equivalency estimation and courses
differ from those perspectives. To test whether there is a correlation
between the culture of course-taking with demographics, we could
use adversarial debiasing to remove the cultural features from the
course embeddings [25]. This is based on the perspective that the
cultural dimension should be treated as an undesired bias, but these
demographic attributes might carry useful signals as well. A limita-
tion of our study is that a FastText model trained on the courses
of a specific institution might not be generalizable to other institu-
tions, as the effects of FastText may differ with different naming
conventions. In future work, to investigate the generalizability of
FastText across different course name conventions, we will also
data mine from FastText representations to infer universal tokens
that havemeanings across departments or institutions. Additionally,
future work could also consider factors such as course difficulty and
learner prior knowledge factors to enhance the recommendations
made by a similarity-based approach.
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8 CONCLUSION
Our study shows that FastText (Course2Vec) can improve course
representations significantly from skip-gram (Course2Vec) and
multi-factor Course2Vec models by taking advantage of the mor-
phological meaning of course names as similarity signals: there
is an improvement of 97.95% from skip-gram to FastText, and an
improvement of 80.75% from the previous state of the art combi-
nation model. Our FastText method can provide more accurate
course alternative recommendations while using fewer sources of
data compared with the current SOTA model. We also present an
analysis framework based on 23 different course attributes to iden-
tify which models perform best on which types of course pairs.
We conclude that FastText performs better than skip-gram in all
categories. FastText has the greatest advantage over skip-gram for
courses that are offered in non-summer semesters, have similar ma-
jor distributions, and share the same course affixes. FastText has the
greatest advantage over Sentence-BERT for courses with different
departments, divisions, and course numbers, while Sentence-BERT
has the advantage when comparing courses with the same course
number (but different departments), different affixes, different ma-
jors, and upper division courses. Lastly, we find that courses that
have the same demographic features exhibit a slight advantage over
those that do not for FastText, while skipgram and SBERT are less
sensitive to such features, a consideration for future fairness work.
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